If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2-49x=0
a = 35; b = -49; c = 0;
Δ = b2-4ac
Δ = -492-4·35·0
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-49}{2*35}=\frac{0}{70} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+49}{2*35}=\frac{98}{70} =1+2/5 $
| 7=2(d+1)-1 | | 19-2x=35 | | 4(g-18)+-14=-6 | | 90+3m+10=180 | | 0.75x-0.25x+14=4 | | 1/2p+2p=5/8 | | 20m+15=16m+195 | | 12•n=11.2 | | 3x(2+6)=18 | | 2(4a+2)=3a | | X2/3-x-12=0 | | 2(3x2)=2x+28 | | 3(x+7)−3=43−2x | | 9n=-9+10n | | 1(5/7)+3y=9 | | 3q+7-q=7q-3 | | 4w-4=2(w-7) | | 6x=1529 | | 0.15n+26.50=0.25n+14.50 | | 7f-4=6f-8 | | 5(w+1)=9w+1 | | 56y+1=−13y+59 | | 4.5x+-10=-28 | | 5-7v=-5v+5 | | 10-6d=-4d | | 8=-21+n | | 1.2x=x+13 | | 6/t=-2 | | -m-8=10+2m | | 3x-11=-9 | | 6(-x-4)+5x=3(10x-8)+10x | | 16-2x-5=1 |